CANN流水线并行推理与资源调度优化
在大规模AI推理场景中,如何充分利用多核硬件资源、提升整体吞吐量是一个关键挑战。CANN提供的流水线并行推理技术,通过将推理过程划分为多个阶段,让不同阶段在不同的计算单元上并行执行,实现了硬件资源的最大化利用。本文将深入剖析流水线并行推理的架构设计、资源调度策略,以及在实际应用中的优化技巧。
相关链接:CANN 组织:https://atomgit.com/cann
parser 仓库:https://atomgit.com/cann/parser
一、流水线并行推理基础
1.1 流水线并行的基本概念
流水线并行是将一个完整的推理任务分解为多个连续的阶段,每个阶段在不同的计算单元上并行执行。当一个请求在某个阶段处理完成后,立即进入下一个阶段,同时该计算单元开始处理下一个请求的同一阶段。
流水线并行的核心优势在于:提高硬件资源利用率、提升整体吞吐量、降低平均延迟、支持更高并发。通过合理的阶段划分和资源分配,可以将吞吐量提升2-4倍,同时保持甚至降低单个请求的延迟。
1.2 流水线并行的性能模型
流水线并行的性能可以用Amdahl定律来建模。假设整个推理任务可以划分为N个阶段,第i个阶段的执行时间为Ti,理想情况下,流水线的吞吐量为1/max(Ti)。实际情况下,由于流水线的填充和排空开销,吞吐量会略低于理想值。
流水线的延迟由两部分组成:单个请求的处理时间和流水线的深度。单个请求的处理时间是所有阶段执行时间的总和。流水线的深度是指同时有多少个请求在流水线中并行处理。
流水线的吞吐量提升取决于流水线的并行度和各阶段的负载均衡。如果某个阶段的执行时间显著长于其他阶段,那么这个阶段就成为流水线的瓶颈,限制了整体的吞吐量。
二、流水线阶段划分
2.1 典型的阶段划分
典型的推理流程可以划分为以下几个阶段:数据预处理、模型推理、结果后处理。
数据预处理阶段负责将原始输入数据转换为模型所需的格式,如图像归一化、文本tokenization等。模型推理阶段执行实际的模型计算,这是最耗时的阶段。结果后处理阶段将模型输出转换为最终结果,如softmax、阈值过滤等。
除了这三个基本阶段,还可以根据实际情况增加其他阶段,如数据增强、特征提取、结果聚合等。
2.2 阶段划分的原则
阶段划分需要遵循几个关键原则:各阶段的计算量相对均衡、阶段间的数据传输量最小、各阶段的资源需求匹配硬件、阶段的独立性便于并行执行。
计算量均衡可以避免流水线瓶颈,数据传输量最小可以减少通信开销,资源需求匹配可以充分利用硬件,独立性便于可以简化调度逻辑。
三、资源调度策略
3.1 静态资源分配
静态资源分配是在系统启动时,为每个阶段分配固定的资源。这种方式简单直观,但灵活性较差。
静态资源分配需要考虑各阶段的资源需求和硬件的资源配置。常见的分配策略包括:基于历史数据的分配、基于负载预测的分配、基于优先级的分配。
https://avg.163.com/topic/detail/10800205
https://avg.163.com/topic/detail/10800151
https://avg.163.com/topic/detail/10800140
https://avg.163.com/topic/detail/10800137
https://avg.163.com/topic/detail/10800055
https://avg.163.com/topic/detail/10800059
https://avg.163.com/topic/detail/10800044
https://avg.163.com/topic/detail/10800037
https://avg.163.com/topic/detail/10800047
https://avg.163.com/topic/detail/10800031
https://avg.163.com/topic/detail/10800028
https://avg.163.com/topic/detail/10800034
https://avg.163.com/topic/detail/10800038
https://avg.163.com/topic/detail/10800023
https://avg.163.com/topic/detail/10800019
https://avg.163.com/topic/detail/10799962
https://avg.163.com/topic/detail/10799957
https://avg.163.com/topic/detail/10799955
https://avg.163.com/topic/detail/10799954
https://avg.163.com/topic/detail/10799953
https://avg.163.com/topic/detail/10799946
https://avg.163.com/topic/detail/10799947
https://avg.163.com/topic/detail/10799944
https://avg.163.com/topic/detail/10799943
https://avg.163.com/topic/detail/10799940
https://avg.163.com/topic/detail/10799936
https://avg.163.com/topic/detail/10799934
https://avg.163.com/topic/detail/10799857
https://avg.163.com/topic/detail/10799853
https://avg.163.com/topic/detail/10799852
https://avg.163.com/topic/detail/10799850
https://avg.163.com/topic/detail/10799848
https://avg.163.com/topic/detail/10799847
https://avg.163.com/topic/detail/10799845
https://avg.163.com/topic/detail/10799844
https://avg.163.com/topic/detail/10799843
https://avg.163.com/topic/detail/10799842
https://avg.163.com/topic/detail/10799840
https://avg.163.com/topic/detail/10799838
https://avg.163.com/topic/detail/10799756
https://avg.163.com/topic/detail/10799754
https://avg.163.com/topic/detail/10799752
https://avg.163.com/topic/detail/10799750
https://avg.163.com/topic/detail/10799748
https://avg.163.com/topic/detail/10799746
https://avg.163.com/topic/detail/10799743
https://avg.163.com/topic/detail/10799747
https://avg.163.com/topic/detail/10799745
https://avg.163.com/topic/detail/10799742
https://avg.163.com/topic/detail/10799744
https://avg.163.com/topic/detail/10799736
https://avg.163.com/topic/detail/10799735
https://avg.163.com/topic/detail/10799640
https://avg.163.com/topic/detail/10799636
https://avg.163.com/topic/detail/10799638
https://avg.163.com/topic/detail/10799633
https://avg.163.com/topic/detail/10799627
https://avg.163.com/topic/detail/10799632
https://avg.163.com/topic/detail/10799624
https://avg.163.com/topic/detail/10799639
https://avg.163.com/topic/detail/10799635
https://avg.163.com/topic/detail/10799631
https://avg.163.com/topic/detail/10799625
https://avg.163.com/topic/detail/10799622
https://avg.163.com/topic/detail/10653067











